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Abstract

We solve two hydrodynamical problems. The first involves a shock
wave, & contact discontinuity, and a rarefaction wave using an uncondi-
tionally stable finite difference scheme. The Courant condition is sate
isfied everywhere except in one zone behind the shock, where it is vio=-
lated by factors of 10 and 100. The nonlinear difference equations are
solved by Newton's method. The total number of Newton iterations to get
to a certain time is apparently independent of the degree to which the
normal stability condition is violated in the one zone.

The second problem involves two rarefaction waves moving in oppo-
site directions. One wave moves in a region where the Courant condition
is violsted by & factor of approximately two. The other wave moves in
a region where the Courant condition is satisfied. Numerical results
are compared with the analytical solution.

An examination of several runs indicates one explicit time step is
about five times as fast as one implicit time step. Therefore, use of
the implicit method is indicated when the Courant condition is violated

by a factor of 5 or more.
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Chapter I

Introduction

Consider a hydrodynamical problem in which a shock wave or dis-
turbance of some kind is advancing into a material. Suppose that in

the neighborhood of the disturbance the sound speed is C. and suppose

0
also that there is a relatively quiescent region behind the disturbance
in which the sound speed is Cl' Any explicit finite difference method

will require

JAYA
ma.xCE<l

so that if Cl >> Co one will be forced to follow the uninteresting de=

tails of the motion in the quiescent region. An unconditionally stable
finite difference method would be useful in such a problem. We present
such & method for the equations of nonviscous compressible flow in one-

dimensional Lagrangian coordinates.

The Differential Equations

The Lagrangian hydrodynamic equations with time t and mass m as

independent veariebles are:



Bl .= =0 (mass equation)

g.%" + %E =0 (momentum equation)
g% +p g-}-:1 =0 (energy equation)

The dependent variables are:

o = density
u = velocity
P = pressure

I = internal energy

The velocity is defined by

u=§€

where x is the coordinate of an element of fluid in the laboratory
frame. Differentiating this velocity equation with respect to mass

we see from the mass equation that

1l _x
o om

The Difference Equeations

To form difference equations from the differential equations we

imagine the fluid partitioned into cells of mass mJ where j = 1,2,400,J,

J being the total number of cells. Subscripts on field variables denote




the value of that particular variasble at that space point. For exanmple,
u J+1/2 denotes the right-hand cell boundary velocity of the ,jth cell.

Superscripts denote time steps. For example, 1‘3“'1 denotes the in-
ternal energy of the ,jth cell at time t = (n+l)at.

We make the following difference approximations:

du o
%"
(1) uIH-l - 29( n+l n+l) 2(1-6) n_.n
Jerfe - Syaje TPy T Pya) 2 (%5 - #a)
At m:j + mj+l m'j + mj+l
dx
3t~ ¢
(2) xn+§|l;/ - an
J+1l/2 +1l/2 _ , n+l
e 2HE - ou 41/2 * (=05, 70
1 ox
p om
(3)
n+l m,j
J .l n+l
X341/2 T Xy-1/2
oL _ _ _du
"""
(%) L )
+ n+ n
I? ~ 3 epj o (1-6)p B _.n
At m, ( j=1/2 3+1/2> m ( j=1/2 “3+1/a)




This form of the difference equations was chosen because it gives

a8 fairly simple form to the Jacoblen matrix. We expect that the Newton
iterative method would work just as well for other forms of the equa-
tions.

The polytropic gas equation of state is used. Also & pseudo=
viscosity term is added to the pressure to spread the shock front. The

pressure term then takes the form [1]:

(5) I)31+l = ( 7-l)pg+lI§+l + /n)npn-*-l (un+l n+l 2)

i3 Vs-1/2 7 Yy
if
n+l n+l
CHTER VAR
n+l n+l _n+l
Py = (7-l)p'j 1‘:
if

(5172 = ¥iage) < ©

Here 7 1s a constant characteristic of the gas and M is a constant
whose cholce will be discussed later.

Rewriting Equations (1) and (4) we have:

n+l n+l n n
6 B a 2e(pj - 7 +1)A'b _ 2(1—9)(p t - v J+J)At _
J+1/2 T Tj41/2 my o+ Mgy my + M

o)




n+l/ ntl n+l nin n
) .o (oo = waze)s | oo - Baya)at
7 3 0T %3 m n -

J 3 3

or j = 1,2,e0eyJe

Assuming that we know the values of the dependent variables at time
n, this gives us a system of 2J simultaneous nonlinear equations in 2T
unknowns for the values at time n+l.

Newton's method can be used to solve this system of equations. For

a general system of the form

(y) = 0

vhere f and y are vectors Newton's method is an iterative procedure in

which the pt+lest iterative y(p*'l) is defined by
o) )

where Ay is the solution of the linear system

(8) oy = -£[y(®)]

where

of
i
()

evaluated at y(P).
Taking (5) into account we see that (6) and (7) may be written in

the form

-13-

0



n+l n+l n+l +1. +1
) & (ua-l/a’ Y1/ a3/ Iy I§+1) =0

- n+l n+l +1
(10) g, (“3-1/2’ e T ) =0

In our case we see then that the Jacobian matrix has a particularly

simple form, namely that it is block tridiagonal.

1 1
A2 B2 02

where the submatrices are 2 x 2.

auag 5 agj
@ A /2 9%
3 Y 3E.
T

lh-




og

gu_l_

1/

3V

(12) 13‘j
dg.

ij—

Jj+1/2

og.

“543/2
Us)cj=

g,

Y3543/2

Q/
(1]

L
Cue

o
Hl oy
Ce

og.

FI_L

J+1

g,

3T

J+l

where all differentiations are with respect to the varisbles u or I at

time n+l,

We use the usual

Define 2 x 2 matrices

-1

Wl = Bl Cl,
-1

Gy = By fys5

scheme to invert a block tridiagonal matrix [2].

as follows:
= (B = Agiy) "y 2sdzd
= (B 5" Ajwj_l) "l(f ; AJ.Gj_l), 2< 3j<gJ

If we redefine Ay and f so that

Ty = (BB &y = (My,0/24T))

then



Ay =Gy = W5y, 1S3

The p+l=st iterate is obtained by setting

1
“gf’i/% = ugﬂ/e + M/

Igp*'l) = Igp) + O,
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Chapter II
Derivation of Matrix Elements and Stability Analysis

We now derive the entries of the 2 x 2 submatrices of the Jacobian

matrixe Referring to (6), (7), (1), (12), and (13) we have:

/ =200t (ap?l apfjx:}.> O

By Wey \Mya1/2 Mg/

=OAt 2] n+l/ n+l n+l
By /2 55 - )] O

n+1 n+1 n+l N1,
1 - = 23A:1 (a:p.j - apj-l-l > ) (ap;l - ap!.;-]_
37 T Myen/e Myage/ Byt By, \ 9L I

. =

=94t 9 [n+l n+l n+l oAt 9 n+l [ n+l n+l
my Ju o B (“J-l/a “.-1+1/2)] i- m, 3T, [Pa (“J-J,/a - “J+1/a)]'



n+l n+l n+l
=20t <3 - op :j+l > =200 (Bpj - apg+l>
2

j43/2  Mgez/) By t By \OLyn 9Lz

O O

Here again all differentiations with respect to u and I are to be taken
at time nitl.

To complete the derivation we need the various partial derivatives

of the pressure terms.

From (2) it follows that
n+l n+l & n+l
() #5377 = ¥5107 = Faage = Faaye + 0801/ - vil1)

+ (l-e)At( s41/2 = 31_1/2)

The pressure term may then be written

+1 n
pn+l - (7-l)m31? Y TPy L Ll
3 n+l n+1 n+l n+l J=1/2 T “3+1f2
X - X p.4 - X
J+l/2 T Ty-1/2 J+1/2 T *3-1/2

U5e1/2 " Ye1/2 7 O




and

+1
pn+l _ (‘7""-1‘)111‘]'131
J xn+l - xn+l
j¥lfe T Ty-1/2
if
n+l n+l

U3-1/2 " V512 S0

A tabulation of the pressure derivatives follows:

apr.H‘l

-1)m OALT, D
i (7 )mJ Je'/ 7m.D
X. - X,

J+1/2 (xj+l Jo = ¥j5u1 /2) J+1/2 T Tjel/2

0 A;c/ 7P (U3-1/2 = %3541/2)

*341/2 T ¥gerf2 (Fsen/2 T ¥5e1/2)

- < ®
where the last two terms do not appear if u J=1/2 uj+l/2 <0

n+1 n+l
9P, .1 . 9P,,1

Susife M3/
n+l
Bpg"'l (7=1)m, op i+l
= | I = Q

~19~




) n+l P n+l
3+1/2 [pj (“3-1/2 7 “ge1/ 2)] = (U3-1/2 " “341/2) S‘ﬁ-z/—a - By

n+lL
9 [ . n+lf n+l n+l dp
BTS [p.j (uj-l/2 - u,j+l/2)] = (uj-l/2 - u:]+l/2) _E.%_J_
n+l n+l n
BP‘.l . apj ; Bpj+l .
Byrfe Fgafe Myaafe
9 L apn+l
n+ _ _
j=1/2 [pa (uJ"l/e - uj+l/2)] =Py + (uj-l/e u.j+l/2) Erj%]z
n+l n+l n+l
37313‘1_ = 0; aip'1+l = - ap:)+l
/2 w32 My
n+l n+l
?J_ = 0; op +l _ (7'11-)111'j +1
Ij+l Ij +1 x 343 /2 - x.j+l/2

Thus 1f we write

K = 6At
X
AN = ———
i I Th 1
M

3 = Y3-1/2 " Vy41/2

=20=




we have:

apn+l
2Am O
j+1/2
A =
5 &J_‘ + Pj) O
n+l
, dp 3+1> -2am(y-1)m,
%33/ Xsije = Xse1f2
B 3 =
ij(r-l)
- P. l - -
J *541/2 ~ *3-1/2
Jpttt 2am(y=1)m
oAm p'+.'l. J+1
3+3/2 X543/2 ~ X341/2
c, =

O O

The method described in Chapter I is used to invert this matrix,

Stability Analysis

As has been pointed out [3] a rigorous stability snalysis for the
hydrodynamical difference equations has not been carried out. This

analysis proceeds in the same manner as that done by Fromm [1].

- 2]_-




We assume that the field variables vary slightly from their true

values.
Let:
Usaafe = Bo(t + E341/2) g1
pJ=DO(l+€j)’ e << 1
IJ=IO(1+83), 5 << 1

For simplicity assume that the cell masses are equal; m'j =m= poax o
We substitute these values in the difference equations and get the

equations of first variation, dropping all higher order terms.

m P ~OX
n ! R 070 - R
G e~ -0 ol
d
Then (14%) becomes
(15) en+l -l = 681‘“"0 §n+l - §n+l + (l-9)8tuo E‘n - §,n
3 3 ey (3-1/2 :.+1/2) Ty (3-1/2 3+1/2)
Cc.5t
We define the Courant number up = = where Co is the local sound
0
speed.
Then (15) becomes
6m (1~6) i
n+l n _ 0 (,n+l . n+l 0 /,n -
(16) e - €5 = G (53-1/2 §3+1/2) S (5;]-1/2 §J+1/2)




The first variation of the energy equation (7) is

n+l n 85t n+l n+l n+l
(1) 1 (85 - o) = 28 55 wo (57 - $5hze)
+ (1-8)5t =n

u gn - gn
™ Py o( j=1/2 j+l/2)
For p? we substitute

(7-1)o I 0(1 - 53 + €5 ) + Mgy 0( §=1/2 = gTJ'1+1/2)

Upon simplification (17) becomes

(18) 2+ - 67 R i o (342 - €5ase) + 0= (e - 5/

Finally we get the first variation of the momentum equation by sub=

stitution into (6) and again dropping higher order terms.

19 52 = g 82 fratety [ - 3) + (3 - ]
+ 2oCa%o [( 12 g‘;ﬁ/ 2) ) (gﬁ/ 2 Ef;f;/ 2)]}
L Loty [ - <) + (5 )

+ MoCao [(E?.l/a - §g+l/2) - (§§+1/2 - §§+3/2)]}



At this point we 4o the usual thing. We assume that the coeffi-
cients are constant and that the solution of these three equations of
Tirst vexlation can be written in a Fourier series. If so0, then each

term of the series is a solution and we look at a typical term to see

vhat conditions must be satisfied to make it a solution.

We assume that

n _ L ik(3+1/2).n
Ey41/2 = & 1
& - e
n__ikjn
o) 3" de r3

and consider only the special case ry =T, = r3 = Te
Substitution of these values into (16), (18), and (19) yields after

simplification

16+1=0
(r)e _[( +1=0) 22 sin k/2 p:uo] ‘oo

0

[ 21Cp sin k/2 (16+1-6

) ):le + [l - by sin k/2 (1'9+l-6)-r]§
0

2iCyu sin k/2 (x6+1=9)
+ - o 7 5 = o
0

c

[ 21(7—-1)uou sin k/2 (x9+1~8
0

)}g + (1=r)s = 0

-2l




For this system of homogeneous linear equations to have a non-

trivial solution it is necessary that its coefficient matrix be singular.

2ipuy sin k/2 (x0+1-0)

ler - 0
o
2iC.u sin k/2 (r9+1-8) 2iC u sin k/2 (x6+1-8)
-—20 1 = W sin® k/2 (2641-8)er - —LQ =0
u07 uoy

21(7—1)u0u sin k/2 (r6+1-8)
o - 1-r
o

Expending this determinant we get:

(1-r)[1rd0 s1n® /2 (x641-6)] + W® sin® x/2 (x041-0)Z = 0

For full generality at this point we would have to study the roots
of this quadratic equation for arbitrary 6, This is somewhat difficult.
The two cases of most importance are 6 = 1/2 and 6 = 1. Let sin® k/2 = 2,

For 6 = 1/2 the equation reduces to

ra(l + 2un® 4 lla‘fa) + 1‘(2u272 - 2) + (l - 27Lp.'ra + ua'ra) =0

=J___ua,r2“_g‘_r 42_[3_—1

2.2

* 2
1+ 2wput™ + =1

=25



Case (1): If A“r° < 1, then r is complex

2 - (1= 132)2 4 1231 - 25-3)
(l + 2XuT2 + u272)2
=l-2)\.}172+ua'ra<l

1+ 2}»;172 + p.2'r2

2

case (2): If A 2 > 1, then r is real.

To have r < 1 we need

27\.;172 + u21‘2 > - p,21'2 + 2uT Jxafz -1l or M+ ur>+ )\.272 -1

‘But At > APH2 . 1, so indeed r < 1. The proof for the case 6 = 1 is
similaxr.

Notice here that r < 1, independent of u, the Courant number. This
shows that we have verifiled a necessary condition for this method to be
unconditionally steble, namely, for solutions of the equations of first

variation having the form we have prescribed.




Chaptexr III

Discussion of Numerical Results

The first problem used to test the scheme is the one used in [2].

Here we have two constant states separated by a discontinuity.

The con=~

figuration at 40 cycles is a shock moving with speed 1.2L, a contact

discontinuity at the point of initial discontinuity, and a rarefaction

wavee.

The initial conditions for this problem are:

7=l.)+

At = 00337 (the Courant value)

&
L}

right).

Material on left

m'j =1

Py = 05

p'j = 3,528
u, = 0.698
Iy = 19.756

Material on right

1
Ol 4li5h
0571k
0

2,857

50 (25 cells to the left of the interface and 25 cells to the




Tables 1, 2, and 3 give the velocities, densities, and internal
energies for several different calculations.

The Lax=Wendroff figures refer to the values obtained using the
scheme of Reference k.

Exact refers to the analytical values.

Explicit refers to values obtained using one of the explicit schemes
of Reference l.

Impl refers to calculations done with all 50 cells heving mass onee.

To test numerically the .unconditiona.l stability of the implicit dife
ference scheme a thin cell having the same density, but only a tenth the
masgs and width of the other cells, was put into cell 20. This means
that the Courant condition was violated there by a factor of approxi-
mately ten.o Imp2 refers to calculations done with this thin cell.

Imp3 is similar to Impa, the only difference being that this time
cell 20 was given mass and width one=hundredth that of the other cells.
Thus the Courant condition was violated by a factor of approximstely
one hundred. As can be seen from the results for Imp2 and Imp3, no
instability appeared in the calculation. When the explicit method was
run with a thin cell, large fluctuations appeared and eventually two
cell boundaries crossed near the thin cell,

Since Newton's method involves evaluating the elements of a large
metrix and then inverting it, another method for solving the system of
similtanecus nonlinear equations was considered, namely, the method of
nonlinear overrelaxation as descrived in [5]. If one has a system of

k algebraic equations

=28-




fi(x.l, x2, XXy x:k) = 0, i-= l,2,ooo,k

each having one continuous derivative, then the generalization of ordi-
nary overrelaxation suggested by Lieberstein for the nonlinear system
is

4 0, o)
EQRm=g

x{n-bl) . x:‘(-n) - %
2 ’

LM
S

[ (nt1) (n) (n)]

xén—i-l) =)y Tl resesXy
I~ 1
RO

etc.,. where fii = Bfi/Bxi. Here superscripts on varisbles denote the
n®™ iterate and n+l-st iterate and  is the relaxation parameter.
It was hoped that this method would be faster than Newton's method
for solving the system of nonlinear equations. As Lieberstein points
out, the rate of convergence of this method depends rather critically on
the choice of we TFor our choice of w = 1 the overrelsxation method was
actually slower than Newton's method, but a more careful study of how to
choose & in an gptional manner would probably maeke the overrelaxation
method faster than Newton's method.

Figure 1 gives the velocity profile for Impl superimposed on the
exact solution. Figure 2 gives the density profile for Impl superin-

posed on the exact solution.



Figure 3 gives the velocity profile near the shock front for
6 = 1/2 and three different values of A In general a large value of
M gives a smoother profile neexr the shock front but spreads the shock
over several cells. A smaller A gives a sharper shock front but has
more oscillation. Some intermediete value of A gives the best compro=-
mise between these two effects. We have found that for 6 = 1/2 a smaller
A can be used than for the explicit cases This is clear from Figure 3.
To test the explicit case we needed to take A = Q.7 and even then some
oscillations appeared near the shock front, but for the implicit case
A = 0.5 gave a falrly shaxrp shock front with practically no oscillation.

Several trials were run with & = 1. The most notable differences
in the results are that (1) they are somewhat less accurate than for
0= 1/2 and (2) it was found that the pseudo-viscosity term was un-
necessary and M = O gave the sharpest shock front with little oscile
lation.

The reduced accuracy may be understood when one considexs that for
6 = 1/2 all the differences are centered and the truncation errors are
of order (At )3. For any other choice of 6 some second~order truncation
error is present. One should then expect more accurate results for
0 = 1/2 than for eny other choice of 6.

The result that A = 0 is the best cholice meens that the implicit
scheme itself contributes an effective viscosity term when 0 = 1.

Teble 4 gives the velocity profile for € = 1, A = O and A = 0.5,



The total number of Newton iterations required to get to t = 13.48
is approximetely 120 for Impl, Impe, and Imp3 and for € = 0.5 and 6 = 1,
This number is thus apparently independent of the degree to which the
Courant condition is violated in zone 20.

The convergence criterion used required that the maximm percentage
change in any value of p or I be less than 1% on one Newton iteration.
This generally required three Newton iterations for each time cycle.
Vhen this criterion was relaxed to the point of requiring the maximum
percentage change to be less than 10% the final results were changed at
most by a unit or two in the fourth significant digit. For this crie
terion only two Newton iterations were required for each time cycle.

When the stricter convergence criterion is used timing experiments
have indicated that the explicit method is approximately five times
faster per time step than the implicit scheme. In thils case use of the
implicit scheme is indicated when the Courant condition is to be vio=
lated by a factor of 5 or more.

With the less stringent convergence criterion the explicit method
is only about three times as fast as the implicit method. Thus if this
convergence criterion gives sufficient accuracy, and in practice it has,
use of implicit scheme is indicated when the Courant condition is to be
violated by a factor of 3 or'more.

In practice the rate of convergence has been approximately quade
ratic, the maximum percentage change being roughly squared each time,

Also in practice the Jacobian matrix has proved to be diagonally dominant.



This partially accounts for the accuracy of the inversion routine and
the raepidity of convergence of Newton's method.

The second problem involves one gas, half of which is initially at
rest, the other half initially moving with constant velocity. The con=
figuration at 4O cycles is two rarefaction waves moving in opposite
directions at a sound speed which is C = 0.316.

The gas initially at rest is divided into 90 cells of mass O.l.
The ges which is initially moving is divided into 10 cells of mass l.0.

Other initial conditions axe:

7 = loh‘ 9 = 005
ut = 0.5 A=0
Flnely celled gas Coarsely celled gas
pj = 1.0 pj = 1.0
uJ = 0.0 uJ = 2.0
Py = 0.071L Py = 0.071h4
IJ = 0.1786 :rJ = 01786

Figure 4 gives the plot of the density at time t = 20 from the
numerical results and also the analytical values, It can be seen thé.t
no instabilities have appeared in the finely divided material even
though the Courant condition is violated by a factor of approximately

twoe.




One difficulty apparent from the graph is that the implicit scheme

seems to lag behind the true solution in the finely divided region.

Evidently the scheme does not allow signals to be propagated at sound

speed in such a finely divided material. This may be the fault of the

form of the difference equations, since they are nonconservative.

1.

2.

3.

5e
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14
15
16
17
18
19

Lax
Wendroff

0.702
0.709
0.725
0.754
0.800
0.866
0.948
1.045
1.150
1.259
1.366
1.463
1.541
1.589
1.596
1.566
1.525
1.508
1.518
1.534

Explicit

0.698
0.699
0.703
0.716
0.752
0.826
0.938
1.075
1.223
1.372
1.512
1.616
1.613
1.588
1.563
1.548
1.538
1.533
1.530
1.528

Table 1
Exact

0.698
0.698
0.698
0.698
0.698
0.822
0.984
1.130
1.342
1.453
1.528
1.528
1.528
1.528
1.528
1.528
1.528
1.528
1.528
1.528

=34

Velocity
oy
0.702
0.707
0.720
0. TUT
0. 79k
0.865
0.961
1.075
1.203
1.335
1.463
1.568
1.611
1.586
1.561
1.545
1.537
1.533
1.531
1.529
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25
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3k
35
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37
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39

b3

k2
L3

L5

1.529
1.526
1.528
1.528
1.528
1.528
1.528
1.528
1.528
1.528
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L.527
1.528
1.527
1.527
1.528
1.533
1.526
1.519
1.576
1.546

0.850
0.108

0.006

04000

1.526
1.525
1.521
1.532
1.520
1.526
L.527
1.528
1.527
1.525
1.529
1.532
1.522
1.530
1.512
1.531
1.524
1.529
1.4k72
1.518
1.298

0.725
0.136

0.018

0.002

1.528
1.527
1.526
1.526
1.526
1.525
1.525
1.525
1.525
1.526
1.526
1.526
1.525
1.526
1.525
1.528
1.524
1.528
1.508
1.522
1.432

0.558
0.11k

0.019

04003

1.528
1.527
1.526
1.526
1.526
1.526
1.525
1.525
1.526
1.526
1.526
1.526
1.525
1.525
1.525
1.527
1.52%
1.529
1.508
1.523
1.432

0.558
0.114

0.019

0,003

1.529
1.527
L.527
1.526
1.526
1.526
1.525
1.526
1.527
1.527
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1.526
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1.526
1.526
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1.525
1.528
1.509
l.527
1.423
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O.111

0.019
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Oalik5
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O.lihi2
0. 438
0,432
0.423
0.1413
0. 4oL
0.388
0.376
0.363
0.352
0.343
0.338
0.337
0,341
0.345
0. 347
0. 346
0344

0.34h4

Explicit

0o i5
0. 4hi5
0.lks5
O lilily
0. 1ko
00431
0,418
0. 402
0.384
0.367
0.351
0.338
0.334
0.338
0.339
0.341
0.343
00344
0.345
0.345

0.345

Table 2

Exact

0. 1l5
Oslik5
0. 445
Q.15
0,445
0.126
0.k07
0.388
0,370
06350
0.345
0.345
0.345
0.345
0.3k5
04345
0.345
0.345
0.345
0e345

0.345

Density
Tupy
Oslihs5
0. 445
Oo lihidy
Oelh1
0.436
0.428
0418
O.hok
0.389
0,37k
0.358
0.345
0.337
0.336
0.339
0.342
0.343
Oo3hh
0.3k
0034k

0,344
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27
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32
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3k
35
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37
38
39

41

43

k5

0,345
0.3k
0. 344
0. 346
1.212
1.287
1.295
1.292
1.29%
1.295
L.297
1.300
1.302
1.30k4
1.306
1.307
1.306
1.299
1.335
1.326
0.831
0.5k40
0,503
0500

0e345
0.345
04345
0.345
1.170
1.225
1.259
1.284
1.289
1,289
1.286
1.296
1.294
1.304
1.294
1.292
1.286
1.307
1.248
1.19%
0.964
0.628
0.518

0.502

04345
0.3U45
0.345
0e345
1.304
1.304
1.304
1.304
1.30k
1.304
1.304
1.30%
1.30%
1.30%
1.304
1.304
1.304
1.304
1.304
1.304
0.500
04500
0. 500
0. 500

w37

0,345
0.345
04345
0.345
1.213
1.242
1.264
1.280
1.290
1.296
1.301
1.304
1.305
1.306
1.303
1.305
1.294
1.306
1.261
1.313
0. 841
0.568
0s511

0. 502

0.3U5
0.345
0.345
0.345
1.218
1.247
1.269
1.283
1.292
1.296
1.301
1.303
1.305
1.306
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1.305
1.294
1.306
1.261
1.313
0.84L
0.568
0s512
04502

0.345
0.345
0.3h45
0.345
1.170
1.225
1.259
1.284
1.289
1.299
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1.306
1.306
1.308
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1.306
1.296
1.309
1.266
1.312
0.834
0.566
0.511

0.502
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19.78
19.77
19.7h
19.67
19.55
19.40
19.21
18.98
18.74
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18.25
18.02
17.92
17.73
17.73
17.79
17.89
17.92
17.90
17.86

17.86
17.88

Explicit

19.76
19.76
19.75
19.73
19.68
19.54
19.32
19.02
18.69
18.34
18.01
17.73
17.60
17.65
17.70
17.75
17.79
17.81
17.82
17.82

17.82
17.83

Teble 3 Internal Energy

Tmpy

19.76
19.75
19.72
19.68
19.59
19.45
19.26
19.01
18.72
18.42
18.12
17.85
17.67
17.66
17.72
17.77
17.80
17.82
17.82
17.83

17.83
17.84

Ty

19.76
19.73
19.69
19.60
19.47
19.28
19.03
18.75
18.45
18.15
17.87
17.68
17.65
17.71
1777
17.80
17.82
17.82

17.83
17.83

17.83
17.83




17.90
17.90
17.78
5.086
4,789
4.763
4. 770
4.765
L. 757
L. 748
k.739
b, 734
h.729
h.727
b.T729
h.725
4,717
4,769
4,698
3.948
2.973
2.863
2.857

17.83
17.81
17.80
5.266
5.026
4.880
4.803
h.r72
Lotk
k.730
4. 732
k731
L.733
k.732
k.17
4.710
4. 7185
4.667
k.72
3.908
3.087
2.887
2.861

17.84
17.84
17.86
5.074
L.954
4.871
4.813
L.772
B 74T
k.730
k.722
k.19
4.720
L.716
4,722
k.710
k.27
4.663
L.738
3.788
3.030
2.88k
2.861

17.84
17.8k
17.86
5.07h
k.955
4.871
L.813
L.772
L. Th7
h.729
L. 721
h.718
k.720
L. 716
4,722
4.710
4,728
L.664
4,738
3.788
3.030
2.884
2.861

17.8%
17.84
17.85
5.052
4.938
4.852
ko797
L.,761
%.738
4,723
4.716
k.11
k.713
L.707
b.715
4.701
4.723
4.661
h.7e8
3.770
3.025
2.883
2.861
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Teble 4

61
A=0

0,780
0.793
0.819
0.858
0.909
0.972
1.04%
1.125
1.210
1.298
1.382
1.456
1.511
1.542
1.551
1.546
1.54
1.540
1.539
1.539
1.538
1.538
1.538
1.538
1.538
1.538
1.538
1.538

}iOm

Velocity

6=1
A=0.5

0.TT5
0.768
0.813
0.851
0+900
0.961
1.032
1.106
1.195
1.282
1.365
1.kko
1.498
1.534
1.547
1.546
1.543
1.540
1.538
1.536
1.535
1.534
1.533
1.533
1.532
1.532
1.532

1.532




Table 4 (Cont.)

29
30
31
32
33
3k
35
36
37
38
39
ho
L1
k2
43
Ly
b5
46
47
48
ko
50

1.538
1.538
1.538
1.538
1.538
1.538
1.538
1.538
1.538
1.538
1.537
1.552
1.177
0.262
0,029
0.003
0.000
00000
0,000
04000
0,000
0,000

=}l

1.532
1.532
1.532
1.532
1.532
1.532
1.532
1.531
1.529
1.521
1.489
1.382
1.079
0.581
0.213
0,06k
0,018
0,005
0,001
0,000
0,000
0,000
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Figo le Velocity profile at time t = 13.48 for problem 1.
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Fige 2. Density profile at time t = 13.48 for problem 1.
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